A Global Mean Ocean Circulation Estimation Using Goce Gravity Models – the Dtu12mdt Mean Dynamic Topography Model
نویسنده
چکیده
The Gravity and Ocean Circulation Experiment GOCE satellite mission measure the Earth gravity field with unprecedented accuracy leading to substantial improvements in the modelling of the ocean circulation and transport. In this study of the performance of GOCE, a newer gravity model have been combined with the DTU10MSS mean sea surface model to construct a global mean dynamic topography model named DTU10MDT. The results of preliminary analyses using preliminary GOCE gravity models clearly demonstrated the potential of GOCE mission. Both the resolution and the estimation of the surface currents have been improved significantly compared to results obtained using pre-GOCE gravity field models. The results of this study show that geostrophic surface currents associated with the mean circulation have been further improved and that currents having speeds down to 5 cm/s have been recovered.
منابع مشابه
Errors of Mean Dynamic Topography and Geostrophic Current Estimates in China’s Marginal Seas from GOCE and Satellite Altimetry
The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) and satellite altimetry can provide very detailed and accurate estimates of the mean dynamic topography (MDT) and geostrophic currents in China’s marginal seas, such as, the newest high-resolution GOCE gravity field model GOCONS-GCF-2-TIM-R4 and the new Centre National d’Etudes Spatiales mean sea surface model MSS_CNES_CLS_11 ...
متن کاملAn ocean modelling and assimilation guide to using GOCE geoid products
We review the procedures and challenges that must be considered when using geoid data derived from the Gravity and steady-state Ocean Circulation Explorer (GOCE) mission in order to constrain the circulation and water mass representation in an ocean general circulation model. It covers the combination of the geoid information with time-mean sea level information derived from satellite altimeter...
متن کاملSatellite gravity gradient grids for geophysics
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth's mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids...
متن کاملA comparison of GOCE and drifter-based estimates of the North Atlantic steady-state surface circulation
Over the last decade, due to the Gravity Recovery And Climate Experiment (GRACE) mission and, more recently, the Gravity and steady state Ocean Circulation Explorer (GOCE) mission, our ability to measure the ocean’s mean dynamic topography (MDT) from space has improved dramatically. Here we use GOCE to measure surface current speeds in the North Atlantic and compare our results with a range of ...
متن کاملImpact of Accurate Geoid Fields on Estimates of the Ocean Circulation
The impact of new geoid height models on estimates of the ocean circulation, now available from the Gravity Recovery and Climate Experiment (GRACE) spacecraft, is assessed, and the implications of far more accurate geoids, anticipated from the European Space Agency’s (ESA) Gravity and Ocean Circulation Explorer (GOCE) mission, are explored. The study is based on several circulation estimates ob...
متن کامل